

www.angewandte.org

2012-51/1 * **CO**₂ * CO₂ * Angewandte

Graphitic Carbon Nitride

Review by M. Antonietti et al.

DNA Origami

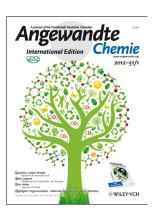
Minireview by B. Saccà and C. M. Niemeyer

Fritz Haber

Essay by Fritz Stern

Highlights: Organocatalysis · Molecular Magnetism · Indole Chemistry

ACIEFS 51 (1) 1-278 (2012) · ISSN 1433-7851 · Vol. 51 · No. 1

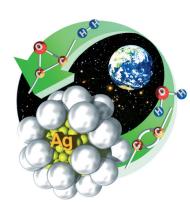


See Back Cover

Cover Picture

Christophe Das Neves Gomes, Olivier Jacquet, Claude Villiers, Pierre Thuéry, Michel Ephritikhine, and Thibault Cantat*

A blooming tree illustrates how CO_2 can be recycled to a variety of chemicals based on a strategy discussed by T. Cantat and co-workers in their Communication on page 187 ff. The approach relies on the simultaneous use of a functionalizing reagent and a reductant that can be independently adjusted to access a variety of molecules from CO_2 . The direct conversion of CO_2 , amines, and silanes to formamides is reported.


C-C Coupling

A. Bino et al. describe the generation of free carbyne radicals in aqueous solution from a variety of metal alkylidyne complexes under mild conditions in their Communication on page 90 ff. The radicals can react further to afford a variety of organic compounds.

Metal Nanoparticles

In their Communication on page 140 ff., Y.-T. Long and co-workers describe the electrodeposition process of single nanoparticles on ion-channel pores of a stable protein 1 membrane.

Heterogeneous Catalysis

T. Kaneda and co-workers report the chemoselective reduction of epoxides and nitrostyrenes in the presence of an Ag–CeO₂ core–shell catalyst in their Communication on page 136 ff.